Способы жарки и их характеристика

admin   04.06.2018   Комментарии к записи Способы жарки и их характеристика отключены

Способы передачи тепла

Во-первых, передача тепла может происходить только от более нагретого тела менее нагретому. Ни какой холод ни куда передаваться не может — передается только тепло. Это второй закон термодинамики, который не нуждается в пояснениях и доказательствах.

Во-вторых, передача тепла между предметами может происходит 3 способами:

в среде газа или жидкости (например, воздуха) посредством конвекции (движения) нагретого газа или жидкости от одного тела к другому. Этот способ возможен только в при наличии среды с промежуточным теплоносителем;

при непосредственном соприкосновении тел, т.е. теплопроводности;

с помощью инфракрасного (теплового) излучения. Может, осуществляется в любой среде. Этот способ передачи тепла нам наиболее интересен, т.к. именно с помощью него осуществляется передача энергии (тепла) в инфракрасных саунах;

В-третьих, инфракрасное излучение, так же как и любое другое электромагнитное излучение, ослабевает при распространении в поглощающей среде и описывается законом Бугера — Ламберта — Бера. В Интернете широко распространено ошибочное мнение, что инфракрасное излучение не поглощается воздухом, однако это не так.

В частности для инфракрасного излучения, азот и кислород, которые входят в состав воздуха не поглощают его, а только ослабляют в результате рассеяния. Однако пары воды, углекислый газ, озон и другие газы, которые входят в состав воздуха, селективно (выборочно) поглощают его. Особенно сильно поглощают ИК излучение пары воды (влажность) и углекислый газ. Кроме того, пыль, содержащаяся в воздухе, рассеивает инфракрасное излучение. Принято считать, что интенсивность ИК излучения убывает обратно пропорционально квадрату расстояния до источника тепла.

В-четвертых, интенсивность инфракрасного излучения зависит от температуры тела — чем выше температура тела, тем мощнее излучение. С этим фактом мы постоянно сталкиваемся в повседневной жизни, и объяснять его не нужно. Но стоит отметить, что с ростом температуры верхняя граница спектра излучения сдвигается в область видимого света. Не длина волны сдвигается (как полагают некоторые люди), а спектр излучения расширяется, путем сдвига верхней границы спектра в область видимого света! При этом в спектре присутствуют все частоты излучения без каких-либо исключений и пробелов, т.к. спектр излучения твердых тел непрерывен.

Это означает, что в спектре излучения более нагретого тела присутствуют все частоты излучения менее нагретого тела. Так, например, для тела с температурой 36°С пик излучения приходится на частоту 9.6 мкм, а для тела с температурой 200°С пик излучения приходится на 2.5 мкм, но при этом частота 9.6 мкм так, же присутствует в спектре излучения, с той лишь разницей, что мощность излучения в несколько раз выше.

Характеристики теплообмена

Вопросы подвода и отвода тепла в ряде производств играют исключительную роль. Так, с помощью подвода или отвода тепла происходит управление процессами разделения гомогенных систем (выпаривание, перегонка, ректификация и др.). Для тепловых процессов на производствах характерен широкий диапазон температур и количества передаваемого тепла, что требует применения различных способов передачи тепла и материалов, наилучшим образом обеспечивающих этот процесс.

Теплообмен – самопроизвольный необратимый процесс переноса теплоты от более нагретых тел (или участков тел) к менее нагретым телам. Теплообмен, происходящий между двумя теплоносителями через разделяющую их твердую стенку, называется теплопередачей.

Теплоноситель – движущая среда (газ, пар, жидкость), используемая для переноса теплоты. Среда с более высокой температурой, отдающая при теплообмене теплоту, является горячим теплоносителем, а среда с более низкой температурой, воспринимающая теплоту, – холодным теплоносителем (хладагентом).

Теплопередача между средами может происходить в установившихся (стационарных) условиях и неустановившихся (нестационарных) условиях. При установившемся (стационарном) процессе поле температур в каждой точке аппарата не изменяется во времени. При неустановившемся (нестационарном) процессе температуры изменяются во времени. Установившиеся процессы соответствуют непрерывной работе аппаратов с постоянным режимом, а неустановившиеся процессы протекают в аппаратах периодического действия и при изменении режима их работы.

Существуют два способа проведения тепловых процессов:

1. путем непосредственного соприкосновения теплоносителей;

2. путем передачи тепла через стенку, разделяющую теплоносители.

При передаче тепла непосредственным соприкосновением теплоносители обычно смешиваются друг с другом, что не всегда допустимо. Поэтому данный способ применяется сравнительно редко, хотя он значительно проще в аппаратурном оформлении. При передаче тепла через стенку теплоносители не смешиваются, а каждый из них движется по отдельному каналу. Поверхность стенки, разделяющая теплоносители, используется для передачи тепла и называется поверхностью теплообмена.

Передача тепла от одного тела к другому может происходить посредством простых процессов: теплопроводности, конвекции и теплового излучения и сложных процессов, состоящих из простых процессов.

Технологии производства, 2011-2014 | Запрещено любое копирование материалов сайта

ТРИ СПОСОБА ПЕРЕДАЧИ ТЕПЛА И КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ

Передача тепла может осуществляться тремя способами:

Все эти способы теплопередачи обусловлены, разностью темпе; ратур; тепло всегда переходит от более нагретого тела к менее нагретому. Передача тепла путем теплопроводности происходит в одном и том же теле там, где в нем существует перепад темпе­ратур или где соприкасаются два различных тела’с различной температурой. Как известно, передача тепла обусловливается движением молекул и атомов тела; поэтому распространение теп­ла теплопроводностью необходимо представить себе как следст­вие того, что более нагретые и поэтому колеблющиеся быстрее молекулы отдают часть своей энергии колебания соседним мо,- лекулам, колеблющимся медленнее. Таким образом происходит распространение тепла путем теплопроводности. Кроме того, в переносе тепла участвуют Электроны. Передача тепла путем теп­лопроводности зависит от величины температурного перепада, геометрических размеров и физических свойств тела. Эта зависи­мость может быть записана в удобной математической форме. Говоря о теплопроводности, следует различать установившуюся (стационарную) и неустановившуюся (нестационарную) прово­димости тепла. Установившийся тепловой поток проходит через тело, температура которого в каждой точке не изменяется со вре: менем, т. е. через такое тело, температурное поле которого не зависит от времени. В этом случае через определенное сечение тела за один час проходит всегда неизменное -количество тепла. Если же у рассматриваемого тела температура изменяется повсе; местно или в отдельных его частях, то это вызывает соответству­ющее изменение теплового потока: он становится нестационар^- ным, т. е. зависимым от времени. При этом изменении темпера; тур изменяется и теплосодержание тела. Количество тепла, кото­рое соответствует этому изменению теплосодержания, соответст­вует и отклонению от равномерного теплового потока — Далее мы увидим, что это изменение теплосодержания тела со временем вследствие соответствующего изменения температурного поля с^ь щественно усложняет математическое описание теплопроводно — 2* сти. К счастью, изменяющееся во времени температурное поле на практике встречается лишь в регенераторах и во всех процессах нагревания. Для преобладающей же части технических процес­сов передачи тепла теплопроводностью характерны установивши­еся тепловые потоки,, которые наблюдаются при достижении ста­ционарного состояния. В этом случае математическое описание явления очень просто. Часто неустановившийся тепловой поток можно определить приближенно, прибегая к раздельному расче­ту процесса аккумуляции и установившегося теплового потока.

Передача тепла конвекцией мокет происходить лишь в газах и жидкостях. Она осуществляется следующим образом: к по­верхности нагрева поступают все новые и новые частички газа или жидкости, которые отдают ей свое тепло. Следовательно, теп­ло к поверхности нагрева переносится механическим путем (кон­вейерное перемещение). Естественно, что теплопередача конвек­цией происходит тем интенсивнее, чем больше скорость движе­ния частичек жидкости или газа. Если это движение поддержи­вается искусственно, например мешалкой или путем создания перепада давления в трубопроводах, то это соответствует искус­ственной, или вынужденной, конвекции. Напротив, движение, обу­словленное исключительно внутренними причинами, т. е. глав­ным образом тепловым расширением и связанным с ним появ­лением подъемной силы, называют свободной конвекцией.

Передача тепла излучением происходит в том случае, когда две поверхности, характеризуемые различной температурой, рас­полагаются в пространстве одна против другой и между ними на­ходится прозрачная для излучения среда. Для лучистого потока прозрачными являются «пустое» пространство и сухой воздух. Непрозрачными являются большинство жидкостей и горючих га­зов, а также различные газы в некоторых интервалах длин волн, как напримёр, СОг и водяной пар. Излучение этих газов имеет огромное значение в технике. Оно будет рассмотрено более об­стоятельно в дальнейшем.

Коэффициент теплоотдачи относится к важнейшим понятиям в области теплопередачи. Он равен такому количеству тепла, ко­торое передается теплоносителем одному квадратному метру по­верхности за один час при разности температур в 1°. Размерность коэффициента теплоотдачи: ккал/м2*час° С. Количество тепла, переданное поверхности Р м2 за т часов при разности температур между поверхностью нагрева и теплоносителем (^1—^)°С,

<2 == а(/х — 12)Р • т ккал. | 0)

Раньше считали, что коэффициент теплоотдачи, подобно коэф­фициенту теплопроводности, является чисто физическим свойст­

Вом тела и поэтому его называли «внешним коэффициентом теп­лопроводности». В настоящее время установлено, что коэффици­ент теплоотдачи зависит как от физических свойств (удельной теплоемкости, коэффициента теплопроводности, вязкости), так и от состояния потока теплоносителя. Таким образом, поскольку коэффициеит теплоотдачи зависит от состояния потока (вихре — образование, краевые влияния и т. д.), приходится считаться с фактом некоторой неустойчивости определяющих его условий. Вследствие этого, как будет показано ниже, для определения ко­эффициента теплоотдачи невозможно дать совершенно точных формул. Тем не менее благодаря сочетанию многочисленных ис­следований с теоретическими изысканиями (особенно с теорией подобия) эта область изучена настолько глубоко, что в определе­нии коэффициента теплоотдачи в общем случае достигнута до­статочная для практических целей точность, которая уступает лишь точности формул, применимых для частных случаев, играю­щих в технике наиболее важную роль (например, для одиночной трубы, насадки регенератора, газа, воды).